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Self-consistent nonperturbative theory for classical systems
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We construct a self-consistent nonperturbative theory for the structure and thermodynamics of a classical
system of particles that goes beyond the usual approaches based on perturbation theory. Our theory, which
gives accurate predictions for the phase diagram, is based on two ingredients: first, use is made of an exact
expression for the free energy of a many-body system in terms of a reference system and a coupling integral
connecting the latter to the final system; second, correlation functions may be very accurately approximated
using a number of sum rules relating the radial distribution function with thermodynamic quantities. Consis-
tency between the coupling integral expression and the sum rules may be achieved by means of a self-
consistent process.
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Prediction of thermodynamic and structural properties of Np 1
materials from a knowledge of the intermolecular interac- <AU>)\ZTI df[f d)\g(r;)\)]mp(r), 3
tions is one of the important goals of statistical mechanics. 0
Available theoretical approaches mostly use a perturbation
expansion around a reference systebh whose properties \yhereN is the number of particles; the mean density, and
are used as input information. For systems of particles inter= . .
. ) ) . r) an angle average of the two-body distribution function
acting via central forces, this scheme has been applied mal ) b T
times, with more or less succes2]. In particular, systems [. | (for fluid phas_esg reduces tolthe radial distribution func-
such as colloids are rather elusive because of their ver§on)- The usual linear perturbation thedtyPT) amounts to
short-range intermolecular attractions as compared with th@PProximating the coupling integral in curly brackets by
large molecular size, a situation where the usual perturbativg(r;A =0)=g(r). A problem that has affected many of the
schemes do not perform well and may in fact lead to quali-applications of this scheme to ordered phases is that the role
tatively inaccurate phase diagrafi. In the present paper of g has been systematically ignored or misinterpreted in the
we propose an alternative to perturbation theory that does néiterature, leading to the formulation of qualitatively incor-
involve any perturbative expansion and that can be appliedect perturbation theoriefst,5]. As will be discussed later,
in principle, to a large variety of systems, not necessarilyeven the straight implementation of LPT results in a quanti-

colloidal in nature. tatively inaccurate phase behavior for short-ranged interac-
Our starting point is the following exact expression for tions.
the free energy of a system with pair interactiong(r): The procedure presented in this paper involves calculating

. U the coupling integral as accurately as possible by performing
F:Fref+f d)\<ﬁ> , U()\):Z d(rii i), (1) Sxphqtly the |n.tegrat|on in\, which mvolves !<now|ed.ge of
0 N i< g(\) in theentirerange G\ <1, an information that is not
. o availablea priori. We propose to solve this admittedly com-
whereU(X) is the total energy of a system whose pair inter-pjicated problem based on the observation that the radial
actions ¢(r;A) depend on a parametar such thatU(0) distribution functions may be very accurately constructed by
=Urer, U(1)=U, Uy and F ¢ being the energy and free using a number of sum rules fgr One such relation is the
energy of a refgrgnce sy;tem. The latter is assumed to ljWrial equation for the pressuf@ Another relation, valid for
kU_OW” for a suff|C|entIy_W|de range of thermodyna_rmc €ON" the solid phase and applicable with reasonable accuracy to
ditions. The average is to be taken over configurationg,e qensefiuid, is a normalization of the first correlation shell
weighted by an appropriate Boltzmann factor containing, e ayerage coordination number. One other relation that

#}g‘)tér-rgte gostzlri;'g Sgganz??f) Eonnzf)ti ';E‘E r?I()arevr;?:tﬁ 0 \ve have found particularly useful is to demand that the first
ge. sy ) P(riM)=dre (1), moment ofr in the'g andg, distributions(the latter corre-

AG(r)= (1)~ drer), the relevant expression becomes sponding to the uncorrelated system, see bglber equal,
1 (r)g=(r)g,» which we have shown to be very accurate. In
F=Frert fo dr(AU)y, 2 previous work 5], we have exploited these three relations to

constructg for a solid made up of hard spherédS) of
with AU=U —U . The average may be evaluated either bydiametero. Since our approach for more general potentials

computer simulation or by theory. For our purposes, it isshares some of the technicalities with the latter problem, we
more convenient to express it as briefly summarize the procedure involved. The starting point
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is the one-particle distribution functiop(r) that, for the  +h,T,p). This procedure is used to compute whatever deriva-
hard-sphere solid, can be very accurately represented byties of the free energy are necessary in order to apply the
sum of (normalized Gaussian peaks centered on the set ofequired sum rulege.g., an approximation for the pressure in
lattice sites{R}, and a Gaussian width parameterIn the  the case of the virial equatipnThese sum rules along with
absence of correlationg®)(r,r')=p(r)p(r'), and the ra- other structural relationéwvhich, taken together, have to be
dial distribution function ig5] equal in number to the number of parameters descriging
provide a set of nonlinear equatiofis the manner described
above for the HS solidthat, once solved, give an improved

gl (A +h,T,p). The scheme is iterated until convergence;
(4)  then\ is increased and the whole process repeated. At the

. Lo end of the calculations(\, T,p) andg(\,T,p), correspond-
When correlations are present, it is reasonable to assumg
INg to all systems from the reference to the target systems,

and justifie_da posteriorj that the correspor)ding(r) May  are obtained in the defined region of thep plane.

also be written as a sum of peaks, each with the same func- 1 jjjystrate the above theory, we now consider a square-
tional form, except that there will existi) a correlation hole well (SW) potential of hard-core diameter and attractive

in r<o, and(ii) some rearrangements in the width param-y || of width 8. For s~ ¢ shows the usual Lennard-Jones-
eter, position, and prefactor of the first peak,, r;, andA,  jike phase diagram. However, aglecreases below a critical
respectively, which are taken as free parameters value 5,~0.070, simulation studieg8] indicate that the

o 1/2efa(f*Ri)2/2
~ _ ~(i) a9 (ry= — _—
go(r) i;O 9o'(),  Go'(r) (277) 4mprR;

112 o ay(r—1 1212 liquid-vapor transition disappears and that a transition be-

A o e % 1 . . .
W)= 1 O(o—r). (5) tween two solids of fcc crystal symmetry arises. This system
Amp\ 2 r has been studied theoretically by a number of workers using

- a properly formulated LPT9] or variations thereof10,11],
The other peakg(r), i>1 are assumed to be identical to with HS as a reference system. Whés o these theories are
the uncorrelated peala)')(r) (this assumption, which turns not expected to perform well since only a narrow region
out to be extremely accurate, has only a practical basis andr <o+ & contributes to the attractive energy, which is ba-

could be relaxed by using additional conditionsgn Now, sically dictated by the value @fs(0); this is expected to be
using any of the available values for the pressure and Gausgery different from the contact value af for the actual
ian parameter of the fcc hard-sphere solgither from  potential.

density-functional theory6] or free-volume approximation e now apply our self-consistent approach to this system.
[7]), the conditions provide three_nonlinear quations fromeq, values ofs not exceedingr, only the structure of in
which ay, 1y, andA may be obtained. Comparison of the 4 yicinity of the contact distandée., the first peakhas to
ensuingg with simulation results demonstrates that this pro-pe taken care of. Assuming a Gaussian form in the solid,

cedure is sound and, in fact, highly accurgé suitably modified to take account of the discontinuityrat
Let us consider in the following generalinteraction po- =4+ 5,

tential. Suppose that we somehow parameigiie terms of

a number of free parameters that provide a faithful represen- 0, r<o

tation in a wide range of densities and temperatutbs

actual parameters need not be the same in different phases

We propose the following strategy. First, the coupling inte- Be‘“l(r‘rl)zlr, r>o+9,

gral in Eqg. (3) is discretized with step-sizh and approxi-

mated using the trapezoidal rule; definiRg\,T,p) as the we are left with four parameters\,,B,«,, andr,, to be de-

free energy of a system with interactioggr;\) and ther- termined from the three conditions together with the exact

modynamic conditions,p (T being the temperatuygEq.  discontinuity equationwhich gives the ratio between the

(2) leads to values ofg at the discontinuity as the Boltzmann factor
B exp(—€ekT). For the liquid, we have found it more conve-

FIM(ON+h,T,p)=F(\,T,p)+ NTrhf [9(r:\,T,p) nient to use a simple exponential form with three parameters,

0

9(n= Ae—al(f—rl)zlr, o<r<oc+4é (7)

0, r<o
a(r): Ae =9y g<r<g+§ (8
©) Be «(=9/r  r>g+4,

with n=0,1,2 . .. .Assume bottF(\,T,p) andg(r;\,T,p)
are known in a region of th&@-p plane. Then the above

+9(r:N+h,T,p)]JA(r;\)r?dr

and obtainA,B, and a4 by applying the virial and the nor-
malization conditions, and the discontinuity equation. The

eﬁprﬁssmn defines a self-corjdsi[etrrl]t Ee)r\af\r/]eTschemt(aj N hormalization condition is clearly approximate, even for the
which on convergence provideso ( T.p) an dense liquid, but this does not turn out to be very critical.

g(rn+ h,T,p). For each value of andp, the scheme starts The corresponding conditions lead, for each phase, to a sys-
by takinggl®(\+h,T,p)=g(\,T,p) and obtainingFX)(A  tem of nonlinear equation&o be integrated into the pro-
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FIG. 2. Fluid and solid free energies of a SW system with

8/lc=0.02 atkT/e=1. Solid line: results from the proposed theory.
Symbols: results from computer simulatifi].

phases, the agreement is quite impressive; for the liquid,
though less accurate, the theory describes reasonably well

the main features ofl. A further check for the accuracy of
our theory is to compare the free energy with that obtained
from simulation; this is seen in Fig. Zhese simulation re-

(c) sults along with those fog were obtained by us using a
standard Monte Carlo techniguyé4] and Eq.(2)], which

. corresponds to the same system. The figure shows a perfect
agreement at the scale of the grajslave liquid points be-
yond the transition that are metastable statdsmore defi-
- nite test, however, is to look at the phase diagram since phase
i boundaries depend very sensitively on numerical details of
the free energynote the extremely linear behavior of the
solid branch in Fig. 2 Figure 3 presents our results for the
- phase diagram fo6=0.02, together with results from other
| theories. The comparison with computer simulation is very

1 1.01 1.02 1.08 1.04 1.05 satisfactory; only in the critical region are the results at vari-

ric ance with the simulation resultsote that the theory is still

FIG. 1. 3(r) for (a) liquid, (b) expanded solid, anét) dense mean field in character since higher-order fluctuations, aris-

solid (all at the triple point, for a square-well system wita/¢  INd from subtle details of the higher-order peakgpére not

=0.02. Solid line: present theory. Symbols: results from compute@ccounted for Also, our theory dramatically improves on
simulations[14]. the results from both linear perturbation thef®y (using the

Carnahan-Starling approximation for the liquid and a free
posed self-consistent schenteat may be easily solved by yolume approximation for the solid phasend the PWDA
standard numerical techniques. The iterative, self-consistenperturbative weighted-density approximation—an effective
procedure is started using a reference HS system; free engferturbation theory with a density-functional treatment for
gies for the latter are taken from the Carnahan-Stafli]  the reference systefil1]).

(liquid) and Hall[13] (solid) expressions, whereas the HS A possible source of error involves integration in tempera-
radial distribution functions are constructed following the tyre (note that for the SW system, the coupling integral may
same methodology as explained before. The whole scheme i written as an integral in scaled temperatuteven if a
numerically very simple and convergence for a single isovery accurate equation of state for the HS system is used, the
therm is obtained in a few iterations; the entire phase diagjiscretized temperature integral will be prone to accumulat-
gram is calculated in less than three minutes of CPU time Ofhg errors whose impact on the phase behavior at tempera-
a 500-MHz Pentium PC. turesk T/e~ 1 would be interesting to investigate. In order to
Figure 1 showgy, along with simulation results, for the check this, we have used a different reference system,
liquid, expanded, and compressed solids that coexist at theamely, that corresponding to a square-well potential at a
triple point for a SW system with5=0.02. For the solid temperatureKT/e=1.8) slightly above the critical tempera-

1.05 11 1.15 1.2 1.25
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FIG. 3. Phase diagram in the temperatlirdensityp plane for
a SW system with5/o0=0.02. Shaded regions are coexistence re-
gions between two phases, according to the present theory. Boun
ary coexistence lines are indicated as follows: black circles, simu
lation results[8]; thick continuous lines, present theory; thin
continuous line, LPT9]; dashed lines, PWDAL1]. Indicated by
letters are the fluidR), expanded solid%;) and dense solidS,).
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than shown

Our theory may be easily extended to incorporate other
thermodynamic relations, and self consistency may be for-
mulated on other statistical ensembles. Also, as mentioned
before, the theory may be extended to general pair potentials,
provided an accurate reference system is available and a suit-
able set of conditions for liquid and solid phases found. A
practical point to solve arises when the potential is more long
ranged than allowed by consideration of only the first peak

of g. Except in extreme cases, we believe there is in principle
no need to extend the number of parametaence, condi-

tions) to describeg(r) since it should be numerically accu-
rate to replace its second and additional peaks by those of the
reference, uncorrelated, radial distribution function. An im-
portant example, where this assumption certainly holds, is
the Lennard-Jones potential, where a standard WCA division
allows use of a reference HS system. Results will be reported
glsewhere.

_ Finally, it is interesting to note that our theory may be
regarded as an easy-to-implement alternative to computer
simulation. In fact, the route that connects the free energy to
that of a reference system is often used in computer simula-

The inset is an enlargement of the critical region, showing result$ion, where the coupling integral is evaluated numerically by

from: simulation(black circles, present theoryfcontinuous ling
and present theory using a different reference sy<tiotted ling,
as explained in the text.

ture for the solid-solid transitiofthe necessary input data for
the free energy were obtained by simulajioimterestingly,
the phase boundary for the solid-solid transition is not modi

guadrature or otherwis@s in our methodbut the integrand
(average excess enejgg evaluated on the computer. Here,
the integrand is calculated using an accurate self-consistent
procedure that, similar to the simulational strategy, depends
sensitively upon having an accurate reference system but, by
contrast, is numerically very simple and involves minor com-
putational work as compared to computer simulation.

fied except close to the critical region where differences with

respect to simulation are reduced by a factor of 2, as seen in This work has been supported by the Dirécci@eneral

the inset in Fig. 3(note that the simulations ifi8] were de Educacio Superior e Investigaaio Cientfica of Spain,
performed with a rather small system size—108 atoms—sainder Grant Nos. PB97-0004-C03-01 and PB97-0004-C03-
that the real critical temperature should actually be lowel02.
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