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Self-consistent nonperturbative theory for classical systems
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We construct a self-consistent nonperturbative theory for the structure and thermodynamics of a classical
system of particles that goes beyond the usual approaches based on perturbation theory. Our theory, which
gives accurate predictions for the phase diagram, is based on two ingredients: first, use is made of an exact
expression for the free energy of a many-body system in terms of a reference system and a coupling integral
connecting the latter to the final system; second, correlation functions may be very accurately approximated
using a number of sum rules relating the radial distribution function with thermodynamic quantities. Consis-
tency between the coupling integral expression and the sum rules may be achieved by means of a self-
consistent process.
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Prediction of thermodynamic and structural properties
materials from a knowledge of the intermolecular intera
tions is one of the important goals of statistical mechan
Available theoretical approaches mostly use a perturba
expansion around a reference system@1# whose properties
are used as input information. For systems of particles in
acting via central forces, this scheme has been applied m
times, with more or less success@1,2#. In particular, systems
such as colloids are rather elusive because of their v
short-range intermolecular attractions as compared with
large molecular size, a situation where the usual perturba
schemes do not perform well and may in fact lead to qu
tatively inaccurate phase diagrams@2#. In the present pape
we propose an alternative to perturbation theory that does
involve any perturbative expansion and that can be appl
in principle, to a large variety of systems, not necessa
colloidal in nature.

Our starting point is the following exact expression f
the free energyF of a system with pair interactionsf(r ):

F5F ref1E
0

1

dl K ]U

]l L
l

, U~l!5(
i , j

f~r i j ;l!, ~1!

whereU(l) is the total energy of a system whose pair int
actionsf(r ;l) depend on a parameterl such thatU(0)
5U ref , U(1)5U, U ref and F ref being the energy and fre
energy of a reference system. The latter is assumed to
known for a sufficiently wide range of thermodynamic co
ditions. The average is to be taken over configuratio
weighted by an appropriate Boltzmann factor contain
U(l). The coupling parameterl connects the reference t
the target system. Usingf(r ;l)5f ref(r )1lDf(r ), with
Df(r )[f(r )2f ref(r ), the relevant expression becomes

F5F ref1E
0

1

dl^DU&l , ~2!

with DU[U2U ref . The average may be evaluated either
computer simulation or by theory. For our purposes, it
more convenient to express it as
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1

dlg̃~r ;l!J Df~r !, ~3!

whereN is the number of particles,r the mean density, and
g̃(r ) an angle average of the two-body distribution functi
@3# ~for fluid phases,g̃ reduces to the radial distribution func
tion!. The usual linear perturbation theory~LPT! amounts to
approximating the coupling integral in curly brackets
g̃(r ;l50)[g̃ref(r ). A problem that has affected many of th
applications of this scheme to ordered phases is that the
of g̃ has been systematically ignored or misinterpreted in
literature, leading to the formulation of qualitatively inco
rect perturbation theories@4,5#. As will be discussed later
even the straight implementation of LPT results in a qua
tatively inaccurate phase behavior for short-ranged inte
tions.

The procedure presented in this paper involves calcula
the coupling integral as accurately as possible by perform
explicitly the integration inl, which involves knowledge of
g̃(l) in theentire range 0<l<1, an information that is not
availablea priori. We propose to solve this admittedly com
plicated problem based on the observation that the ra
distribution functions may be very accurately constructed
using a number of sum rules forg̃. One such relation is the
virial equation for the pressureP. Another relation, valid for
the solid phase and applicable with reasonable accurac
thedensefluid, is a normalization of the first correlation she
to the average coordination number. One other relation
we have found particularly useful is to demand that the fi
moment ofr in the g̃ and g̃0 distributions~the latter corre-
sponding to the uncorrelated system, see below! be equal,
^r & g̃5^r & g̃0

, which we have shown to be very accurate.
previous work@5#, we have exploited these three relations
construct g̃ for a solid made up of hard spheres~HS! of
diameters. Since our approach for more general potenti
shares some of the technicalities with the latter problem,
briefly summarize the procedure involved. The starting po
©2001 The American Physical Society31-1
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is the one-particle distribution functionr(r ) that, for the
hard-sphere solid, can be very accurately represented
sum of ~normalized! Gaussian peaks centered on the set
lattice sites,$R%, and a Gaussian width parametera. In the
absence of correlations,r (2)(r ,r 8)5r(r )r(r 8), and the ra-
dial distribution function is@5#

g̃0~r !5(
i>0

g̃0
( i )~r !, g̃0

( i )~r !5S a

2p D 1/2e2a(r 2Ri )
2/2

4prrRi
.

~4!

When correlations are present, it is reasonable to assu
and justifieda posteriori, that the correspondingg̃(r ) may
also be written as a sum of peaks, each with the same f
tional form, except that there will exist:~i! a correlation hole
in r ,s, and ~ii ! some rearrangements in the width para
eter, position, and prefactor of the first peak,a1 , r 1, andA,
respectively, which are taken as free parameters

g̃(1)~r !5
A

4pr S a1

2p D 1/2e2a1(r 2r 1)2/2

r
Q~s2r !. ~5!

The other peaksg̃( i )(r ), i .1 are assumed to be identical
the uncorrelated peaksg̃0

( i )(r ) ~this assumption, which turn
out to be extremely accurate, has only a practical basis
could be relaxed by using additional conditions ong̃). Now,
using any of the available values for the pressure and Ga
ian parameter of the fcc hard-sphere solid~either from
density-functional theory@6# or free-volume approximation
@7#!, the conditions provide three nonlinear equations fr
which a1 , r 1, and A may be obtained. Comparison of th
ensuingg̃ with simulation results demonstrates that this p
cedure is sound and, in fact, highly accurate@5#.

Let us consider in the following ageneralinteraction po-
tential. Suppose that we somehow parametrizeg̃ in terms of
a number of free parameters that provide a faithful repres
tation in a wide range of densities and temperatures~the
actual parameters need not be the same in different pha!.
We propose the following strategy. First, the coupling in
gral in Eq. ~3! is discretized with step-sizeh and approxi-
mated using the trapezoidal rule; definingF(l,T,r) as the
free energy of a system with interactionsf(r ;l) and ther-
modynamic conditionsT,r (T being the temperature!, Eq.
~2! leads to

F [n11]~l1h,T,r!5F~l,T,r!1NphE
0

`

@ g̃~r ;l,T,r!

1g̃[n]~r ;l1h,T,r!#Df~r ;l!r 2 dr

~6!

with n50,1,2, . . . .Assume bothF(l,T,r) and g̃(r ;l,T,r)
are known in a region of theT-r plane. Then the above
expression defines a self-consistent iterative schemen
which on convergence providesboth F(l1h,T,r) and
g̃(r ;l1h,T,r). For each value ofT andr, the scheme start
by taking g̃[0] (l1h,T,r)5g̃(l,T,r) and obtainingF [1] (l
01613
a
f

e,

c-

-

nd

s-

-

n-

s
-

1h,T,r). This procedure is used to compute whatever deri
tives of the free energy are necessary in order to apply
required sum rules~e.g., an approximation for the pressure
the case of the virial equation!. These sum rules along with
other structural relations~which, taken together, have to b
equal in number to the number of parameters describingg̃)
provide a set of nonlinear equations~in the manner described
above for the HS solid! that, once solved, give an improve
g̃[1] (l1h,T,r). The scheme is iterated until convergenc
then l is increased and the whole process repeated. At
end of the calculationsF(l,T,r) andg̃(l,T,r), correspond-
ing to all systems from the reference to the target syste
are obtained in the defined region of theT-r plane.

To illustrate the above theory, we now consider a squa
well ~SW! potential of hard-core diameters and attractive
well of width d. For d;s shows the usual Lennard-Jone
like phase diagram. However, asd decreases below a critica
value dc;0.07s, simulation studies@8# indicate that the
liquid-vapor transition disappears and that a transition
tween two solids of fcc crystal symmetry arises. This syst
has been studied theoretically by a number of workers us
a properly formulated LPT@9# or variations thereof@10,11#,
with HS as a reference system. Whend!s these theories are
not expected to perform well since only a narrow regions
,r ,s1d contributes to the attractive energy, which is b
sically dictated by the value ofg̃HS(s); this is expected to be
very different from the contact value ofg̃ for the actual
potential.

We now apply our self-consistent approach to this syste
For values ofd not exceedings, only the structure ofg̃ in
the vicinity of the contact distance~i.e., the first peak! has to
be taken care of. Assuming a Gaussian form in the so
suitably modified to take account of the discontinuity atr
5s1d,

g̃~r !5H 0, r ,s

Ae2a1(r 2r 1)2
/r , s,r ,s1d

Be2a1(r 2r 1)2
/r , r .s1d,

~7!

we are left with four parameters,A,B,a1, andr 1, to be de-
termined from the three conditions together with the ex
discontinuity equation, which gives the ratio between th
values of g̃ at the discontinuity as the Boltzmann fact
exp(2e/kT). For the liquid, we have found it more conve
nient to use a simple exponential form with three paramet

g̃~r !5H 0, r ,s

Ae2a1(r 2s)/r , s,r ,s1d

Be2a1(r 2s)/r , r .s1d,

~8!

and obtainA,B, anda1 by applying the virial and the nor
malization conditions, and the discontinuity equation. T
normalization condition is clearly approximate, even for t
dense liquid, but this does not turn out to be very critic
The corresponding conditions lead, for each phase, to a
tem of nonlinear equations~to be integrated into the pro
1-2
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SELF-CONSISTENT NONPERTURBATIVE THEORY FOR . . . PHYSICAL REVIEW E 65 016131
posed self-consistent scheme! that may be easily solved b
standard numerical techniques. The iterative, self-consis
procedure is started using a reference HS system; free e
gies for the latter are taken from the Carnahan-Starling@12#
~liquid! and Hall @13# ~solid! expressions, whereas the H
radial distribution functions are constructed following t
same methodology as explained before. The whole schem
numerically very simple and convergence for a single i
therm is obtained in a few iterations; the entire phase d
gram is calculated in less than three minutes of CPU time
a 500-MHz Pentium PC.

Figure 1 showsg̃, along with simulation results, for th
liquid, expanded, and compressed solids that coexist at
triple point for a SW system withd50.02. For the solid

FIG. 1. g̃(r ) for ~a! liquid, ~b! expanded solid, and~c! dense
solid ~all at the triple point!, for a square-well system withd/s
50.02. Solid line: present theory. Symbols: results from compu
simulations@14#.
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phases, the agreement is quite impressive; for the liq
though less accurate, the theory describes reasonably
the main features ofg̃. A further check for the accuracy o
our theory is to compare the free energy with that obtain
from simulation; this is seen in Fig. 2@these simulation re-
sults along with those forg̃ were obtained by us using
standard Monte Carlo technique@14# and Eq. ~2!#, which
corresponds to the same system. The figure shows a pe
agreement at the scale of the graph~save liquid points be-
yond the transition that are metastable states!. A more defi-
nite test, however, is to look at the phase diagram since ph
boundaries depend very sensitively on numerical details
the free energy~note the extremely linear behavior of th
solid branch in Fig. 2!. Figure 3 presents our results for th
phase diagram ford50.02, together with results from othe
theories. The comparison with computer simulation is ve
satisfactory; only in the critical region are the results at va
ance with the simulation results~note that the theory is stil
mean field in character since higher-order fluctuations, a
ing from subtle details of the higher-order peaks ofg̃, are not
accounted for!. Also, our theory dramatically improves o
the results from both linear perturbation theory@9# ~using the
Carnahan-Starling approximation for the liquid and a fr
volume approximation for the solid phase! and the PWDA
~perturbative weighted-density approximation—an effect
perturbation theory with a density-functional treatment
the reference system@11#!.

A possible source of error involves integration in tempe
ture ~note that for the SW system, the coupling integral m
be written as an integral in scaled temperature!. Even if a
very accurate equation of state for the HS system is used
discretized temperature integral will be prone to accumu
ing errors whose impact on the phase behavior at temp
tureskT/e;1 would be interesting to investigate. In order
check this, we have used a different reference syst
namely, that corresponding to a square-well potential a
temperature (kT/e51.8) slightly above the critical tempera

r

FIG. 2. Fluid and solid free energies of a SW system w
d/s50.02 atkT/e51. Solid line: results from the proposed theor
Symbols: results from computer simulation@14#.
1-3
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ture for the solid-solid transition~the necessary input data fo
the free energy were obtained by simulation!. Interestingly,
the phase boundary for the solid-solid transition is not mo
fied except close to the critical region where differences w
respect to simulation are reduced by a factor of 2, as see
the inset in Fig. 3~note that the simulations in@8# were
performed with a rather small system size—108 atoms—
that the real critical temperature should actually be low

FIG. 3. Phase diagram in the temperatureT densityr plane for
a SW system withd/s50.02. Shaded regions are coexistence
gions between two phases, according to the present theory. Bo
ary coexistence lines are indicated as follows: black circles, si
lation results @8#; thick continuous lines, present theory; th
continuous line, LPT@9#; dashed lines, PWDA@11#. Indicated by
letters are the fluid (F), expanded solid (S1) and dense solid (S2).
The inset is an enlargement of the critical region, showing res
from: simulation~black circles!, present theory~continuous line!,
and present theory using a different reference system~dotted line!,
as explained in the text.
, J

s,

01613
i-
h
in

o
r

than shown!.
Our theory may be easily extended to incorporate ot

thermodynamic relations, and self consistency may be
mulated on other statistical ensembles. Also, as mentio
before, the theory may be extended to general pair potent
provided an accurate reference system is available and a
able set of conditions for liquid and solid phases found
practical point to solve arises when the potential is more lo
ranged than allowed by consideration of only the first pe
of g̃. Except in extreme cases, we believe there is in princ
no need to extend the number of parameters~hence, condi-
tions! to describeg̃(r ) since it should be numerically accu
rate to replace its second and additional peaks by those o
reference, uncorrelated, radial distribution function. An im
portant example, where this assumption certainly holds
the Lennard-Jones potential, where a standard WCA divis
allows use of a reference HS system. Results will be repo
elsewhere.

Finally, it is interesting to note that our theory may b
regarded as an easy-to-implement alternative to comp
simulation. In fact, the route that connects the free energ
that of a reference system is often used in computer sim
tion, where the coupling integral is evaluated numerically
quadrature or otherwise~as in our method! but the integrand
~average excess energy! is evaluated on the computer. Her
the integrand is calculated using an accurate self-consis
procedure that, similar to the simulational strategy, depe
sensitively upon having an accurate reference system bu
contrast, is numerically very simple and involves minor co
putational work as compared to computer simulation.

This work has been supported by the Direccio´n General
de Educacio´n Superior e Investigacio´n Cientı́fica of Spain,
under Grant Nos. PB97-0004-C03-01 and PB97-0004-C
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